

区域地下水流网

- 使用带有水位监测数据的 散点构建网格拓扑;
- 计算网格内的水位梯度, 基于梯度数据使用矢量流 线展示流网;
- 使用降维等值工具创建等 水位线;
- 使用散点标注工具为水位 进行标注。

计算网格空间内任意点的水力梯度值

$$(gradF h)(j) = \frac{1}{2A(j)} \sum_{i=1}^{3} h_i T \overrightarrow{e_{ji}}$$

$$\begin{bmatrix} (Te_{ji})_1 \end{bmatrix}$$

$$T\overrightarrow{e_{ji}} = \begin{bmatrix} \langle f_{ji} \rangle_1 \\ (Te_{ji})_2 \\ (Te_{ji})_3 \end{bmatrix} = \overrightarrow{n_j} \times \overrightarrow{e_{ji'}}$$

$$\overrightarrow{n_j} = \frac{\overrightarrow{e_{j1}} \times \overrightarrow{e_{j2}}}{\left\| \overrightarrow{e_{j1}} \times \overrightarrow{e_{j2}} \right\|}$$

- A(j)为三角形j之面积;
- h_i为三角形j的第i个顶点上的水位值;
- *e*_{ii}为第i个顶点的对边,即除顶点i之 外其余两个顶点沿逆时针方向所组成 的向量;
- T为90度旋转矩阵, *Teji*为eji向量沿三 角形平面旋转90度后的向量;
- **n**j为三角形j的单位法向量,其长度为 1;

NAY

• ēj1和ēj2是三角形j的任意两边。

模板输入:水位监测数据

- > 项目自有单期水位监测数据,*.csv文件。
- > 联机资源中获取的单期水位数据, *.kml文件 (需持有数据授权)
- ▶ 必须包含监测井坐标 (X、Y、Z) 信息和水位监测信息。

显示	显示 輸入1-水位数据-GWLevelMonth04.kml 👤 属性 网格数据 👤 精确度 6 🗄 10 ⁰ 📃 🔍 🚱 🔗														
	Name	altitude№	1ode b	egin	description	drawOr	deren	d extrud	e icon	month 04	tessellate	timestamp	visibility	网格教▲	
	1495 -1												-1	单点	
显示	显示 输入1-水位数据-GWLevelMonth04.kml ▼ 属性 散点数据 ▼ 2074.2 1													魚点	
	ef散点ID	ef散点			ef散点 矢	ef散点 矢量长度				2454.6	-1		-1	单点	
0	0	100.707	38.8913	3 0	107.956					1721			1	曲占	
1	1	101.371	38.536	0	108.448					1721	1-1		-1	中州	
2	2	101 176	28 25 25	5.0	108 202	_				1579.6	-1	r	-1	单点	
<u>د</u>	<u>_</u>	101.170	50.555	50	100.202						\mathbf{O}				
3	3	101.072	38.7347	7 0	108.24			T.	V		$\langle \vee \rangle$				

INTER .

模板输入: 下载DEM

联机资源中获得的DEM数据。

- 数据源: NASA-SRTM高程->中国高程 (30m 精度);
- ・选择下载区域:拖拽多边形定义区域;导入多 边形区域;
- · 选择下载精度: 8-10;
- 下载导入高程数据,改变管道图层数据源。

