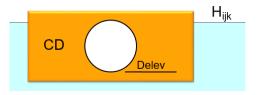

实例背景

- ▶ 区域水流方向由东至西;
- ▶ 主要补给方式为降水;
- 左侧有稳定水位的湖泊;
- ▶ 中部有联通湖泊的排水渠;
- 区域内有不同深度的15口抽水井。

实例背景


- ▶ 地层:潜水含水层1,承 压含水层2、3
- ➤ 面积: 22860m*22860m, 15行*15列,
- ▶ 边界条件
 - 降水
 - 湖泊 (左侧定水头)
 - 排水沟
 - 抽水井

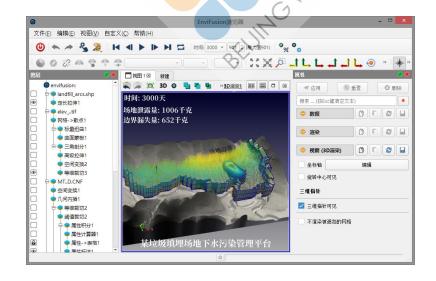
定水头(0) 定水头(1) Affected by pumping Surface-water divide since water divide since water

排水沟边界模块

可用于模拟农业灌溉渠、泉、河床等。受排水沟底部高程、传导系数的影响。

CD Delev H_{ijk}

水位高于底部高程: Q= C(H_{iik} -Delev)


水位低于底部高程: Q=0

传导系数C= 排水沟填充材料

渗透系数×宽度×长度

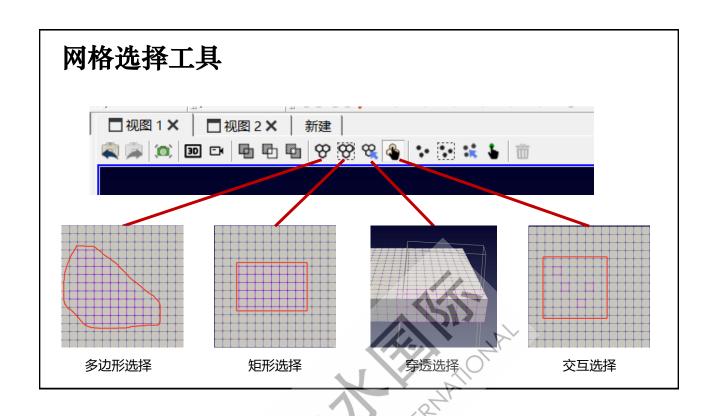
厚度

环境地学计算平台EnviFusion

数值模拟引擎

- 梯度场引擎
- MODFLOW引擎
- MT3DMS引擎
- SEAWAT引擎
- TFPR引擎
- 地球化学引擎
- 文本分析引擎
- 数据补齐引擎
- 污染评估引擎

4D可视化工具


- 空间地理(切片/扭曲/提取等)
- 拓扑变换(点线面体间转换)
- 时间变换(时序差分/平滑等)
- 属性变换 (筛选/提取/插值等)

管道图层

创建用于解释运行MODFLOW的网格 (网格范围、网格数)

模型参数	文件类型	数据处理变换	赋值MODFLOW模型
高程文件	CSV	表格->散点	网格高程
渗透系数 (水平、垂向)	CSV	表格->散点、矩形选择网格	层赋值、网格赋值
垂向补给	CSV	表格->散点、矩形选择网格	层赋值、网格赋值
定水头		矩形选择网格	网格赋值
排水沟	弧段	创建弧段、属性计算器、长度计算	线赋值
抽水井		交互选择网格	网格赋值
A B Y 11430 11430	C D Z Top1 E 60	E F G H I J tot1 Bot2 Bot3 rech Kh1 Kh2 K -45 -120 -215 0.0009 15 0.9	K L M h3 Kv2 Kv3 2 0.18 0.4

